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Introduction 

 Fracture mechanics is a subject focusing on under-
standing and predicting fracture process of materials and 
structures. The past century has witnessed the development 
of fracture mechanics as both a field of fundamental sci-
ence and an active engineering discipline. Integrating me-
chanics, mathematics and material science, the scientific 
questions studied under fracture mechanics includes frac-
ture criteria, universal crack tip fields as well as fail-
ure/damage mechanisms of different material systems in 
various length scales. Combined with experimental charac-
terization and advanced fabrications, fracture mechanics 
have guided engineering practices in predicting fracture 
loads, critical crack length and the growth rate of cracks 
under corrosive environments, which is essential in guar-
anteeing and improving structural reliability.  
 At the 100-year anniversary of the publication of Grif-
fith’s fracture paper [1], the present lecture is aimed to 
review some of the landmark basic theories in fracture 
mechanics, including the Griffith theory of energy release 
rate [1], Irwin’s universal K-field [2] and G-K relation [3] 
in linear elastic fracture mechanics (LEFM), Dugdale-
Barenblatt’s cohesive crack models [4,5], the J-integral [6] 
and HRR field [7,8] in elastic-plastic fracture mechanics 
(EPFM), the JKR [9] and MD [10] models in adhesive 
contact mechanics and Paris’ law of fatigue crack growth 
[11,12]. There have been tremendous applications of these 
fracture mechanics concepts in studying failure and struc-
tural reliability of engineering components and structures. 
Especially, recently emerged new materials and rapidly 
developed computational tools have presented novel chal-
lenges and opportunities for further advance of fracture 
mechanics in the second century. The lecture will continue 
with discussions of some recent advances in machine 
learning based modelling in fracture mechanics, including 
machine learning approaches to obtaining stress intensity 
factor (SIF) solutions and toughening 2D materials via 
topological effects and lattice asymmetry. We will end 
with some perspectives on some of the remaining out-
standing problems in the field. 

Review of some basic theories  

 During the past century, fracture mechanics has con-
tributed a series of novel concepts regarding the fracture 

process of materials and formed a systematic framework to 
quantitively predict fracture behavior in various engineer-
ing scenarios, distinguishing fracture mechanics from other 
branches of mechanics. In this section, we review some of 
the landmark basic theories in the historical development 
of fracture mechanics as a branch of solid mechanics and 
engineering science.  
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Figure 1. Basic theories and concepts developed in frac-

ture mechanics. 
 Griffith’s crucial development of a fracture criterion 
based on energetic arguments [1] marked the beginning of 
fracture mechanics. Before Griffith’s theory, materials are 
thought to fail when the stress level reaches a critical 
valve. However, this stress-based criterion leads to a para-
dox when applied to the crack tip. Using linear elasticity, 
Inglis [13] found the stress at the tip of a 2a-long crack in 
an infinite plate becomes singular as long as the remote 
load, 22σ ∞ , is larger than zero (Fig. 1a). Under the stress-
based criterion, this unbounded stress implies the crack 
will propagate at nearly zero load, which clearly violates 
experimental observations. To resolve this paradox, Grif-
fith adopted an energy-based point of view and treated 
fracture as a process of releasing elastic energy and creat-
ing new surfaces. Correspondingly, Griffith pointed out the 
total free energy of the system, Γ , should include not only 
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the elastic potential energy, U , but also the surface ener-
gy, i.e.,  
 2 2U aγΓ = + ⋅ , (1) 
where γ is the surface energy density. Based on laws of 
thermodynamics, Griffith proposed the total free energy 
should decrease during fracture and it is the balance be-
tween reduction in elastic energy and increase in surface 
energy as crack length extends that determines the critical 
condition for crack growth, i.e., the crack starts to propa-
gate only if  
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where ( )2G U a= − ∂ ∂  is the energy release rate with 
respect to the crack extension and cG is the fracture energy 
of the material (Fig. 1a). Griffith further carried out exper-
iments on glasses to measure the surface energy and vali-
date the predictions of this energy release rate theory via 
fracture tests of glass tubes and spherical bulbs with cracks 
of various sizes. Different from the stress-based criterion, 
Griffith’s theory of energy releases rate predicts the critical 
load of fracture depends on not only material properties 
but also geometry (length) of the pre-exiting crack.  
 While Griffith’s theory addresses fracture from a 
global energy release rate point of view, George Irwin 
considered stress field near a crack tip and introduced the 
concept of stress intensity factor (SIF), K. Irwin [2,3] un-
veiled that there exists a universal K-field describing the 
asymptotic behavior of stress near the crack tip, which is 
independent of the global geometry and loading condi-
tions, 

 ( ) ( )ˆ, 0
2

ij ij
K

r as r
r

σ θ σ θ
π

= → , (3) 

where ( ),r θ  is the polar coordinate with origin at the 

crack tip and ( )ˆijσ θ  are universal angular functions (Fig. 
1b). By calculating the work done to unzip the crack tip 
locally, Irwin showed that the universal crack tip field can 
be related to Griffith’s global energy release rate via the 
following G-K relation, 
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where E is Young’s modulus and v is Poisson’s ratio of 
the material. Correspondingly, the energy-based fracture 
criterion can also be written in terms of K as 
 cK K≥  (5) 
where cK is the toughness of the material. Irwin’s G-K 
relation also provided a systematic way to calculate the 
energy release rate by solving boundary value problems in 
linear elasticity or, in some cases, to calculate the stress 
intensity factor from known energy release rate. 
 Because linear elastic constitutive relation is expected 
to fail eventually if stress keeps increasing in real materi-

als, the stress singularity in K-field has raised some con-
troversy. In reality, materials are expected to reach their 
strength within the so-called fracture process zone (PZ) 
near a crack tip (Fig. 1c). To account for the material be-
havior inside the PZ, the concept of cohesive crack models 
was introduced independently by Dugdale [4] and Baren-
blatt [5]. In such models, a force-separation law, 

( )σ σ δ= , based on atomic interaction between upper and 
lower crack surfaces [11] or plastic yielding near a crack 
tip in a plane stress sheet [10] is imposed in a finite PZ at 
the crack tip and stress field does not go beyond a finite 
strength. Locally, crack is expected to propagate following 
the crack tip opening displacement (CTOD) criterion [14],  
 tip cδ δ≥ , (6) 

where tipδ  is the separation at the physical crack tip and 

cδ correspond to the ending point of the force-separation 
law. It has been shown that the Griffith criterion in Eq. (2) 
is equivalent to the cohesive fracture criterion in Eq. (6) if 
2γ is replaced with 
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 Another important landmark in fracture mechanics 
was the development of elastic-plastic fracture mechanics 
(EPFM) with key concepts including J-integral [6] and 
Hutchinson-Rice-Rosengren (HRR) field [7,8]. Rice [6] 
introduced the path independent J-integral,  
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where C is a contour enclosing the crack tip as shown in 

Fig. 1d, 
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nonlinear solid and n is the unit normal vector of the con-
tour. Using its path independence property, it can be 
shown that J-integral corresponds to the energy release rate 
for a blunted notch in any non-linear elastic material or an 
elastic-plastic material without unloading,  
 notchJ J G= = . (9) 
Furthermore, the crack tip field in a power-law elastic-
plastic material with stress-strain relation, 
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was solved by Hutchinson [7] and Rice and Rosengren [8], 
resulting in the so-called Hutchinson-Rice-Rosengren 
(HRR) field (Fig. 1e), 
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where nI is a function of the power index n, ( )ijσ θ and 

( )iu θ  universal angular functions depending on plane 



 
 

strain or plane stress condition. The HRR field then firmly 
established J-integral as the unique parameter that controls 
the crack tip field in a plastically deforming solid without 
unloading.  
 The development of fracture mechanics has also influ-
enced the development of other related disciplines. For 
instance, for adhesion between deformable bodies, the 
boundary of adhesive contact area behaves similar to a 
crack front. This establishes an analogy between adhesive 
contact mechanics and fracture mechanics. In this sense, 
the Johnson-Kendall-Roberts (JKR) model [9] in adhesive 
contact mechanics can be thought of as Griffith’s theory in 
a different context (adhesion), and Maugis’s model [10] in 
adhesive contact mechanics are analogous to Dugdale-
Barenblatt’s cohesive crack models.  
 The concepts originated from fracture mechanics have 
been applied to address many engineering problems. For 
example, fatigue accounts for about 90% of failure in met-
als. Using the concept of SIF, the steady-state growth rate 
of a fatigue crack can be well described by the so-called 
Paris’ law [11,12],  

 ( )nda C K
dN

= ∆  (13) 

where a is the crack length, N is the loading cycle number, 
max minK K K∆ = − is the range of SIF and C and n are ex-

perimentally determined constants for any given materials.  

Application of machine learning in fracture 
mechanics 

 Besides the celebrated achievements in producing 
fundamental knowledges and improving engineering per-
formances during the past 100 years, fracture mechanics 
remains an exciting field for new discoveries and novel 
applications. With ever increasing rate of developments of 
new materials and novel computational tools, the study of 
fracture mechanics faces new opportunities and challenges. 
As some examples, we discuss below some recent advanc-
es in applications of machine learning in fracture mechan-
ics. The intention here is to draw the attention of the re-
search community to some of the open questions in this 
field.  

1. A machine learning approach to LEFM 

 SIF is an important concept in LEFM and the experi-
mental measurement of fracture toughness usually requires 
an accurate evaluation of SIF. Analytical and empirical 
solutions to SIF have been developed for specimens with 
relatively simple geometries. However, some recently de-
veloped advanced experimental methods, especially at 
small scales, involve complex specimen geometries. In 
such cases, neither analytical nor empirical solutions are 
feasible. Numerical simulations, such as finite element 
method (FEM), can provide a reliable solution. However, 
the construction and deployment of FEM simulations re-
quire time and expertise, which is impractical when deal-
ing with large numbers of specimens with variations in 
dimensions. Therefore, the following question can be 

raised: is there any possible solution to SIF in complex 
fracture problems which can maintain accuracy and effi-
ciency at the same time? 

 
Figure 2. Machine learning solution to SIF for fracture 

samples with complex geometries.  

 Recently we have been exploring an innovative class 
of solutions based on machine learning, which can serve as 
a promising substitute when analytical and empirical solu-
tions are not accessible (Fig. 2a). The feasibility and ad-
vantage of the machine learning solutions are demonstrat-
ed through the application in small-scale fracture tough-
ness measurements of pre-notched pentagonal cross-
section cantilevers (Fig. 2b). Specifically, regression tree-
based and neural network-based solutions are obtained 
through training over a well-prepared data set. The ob-
tained machine learning solutions can evaluate SIF accu-
rately and rapidly (Fig. 2c), thus suggesting an approach to 
accelerate data interpretation in fracture toughness meas-
urements on samples with more complex geometries.  

2. A machine learning approach to topological toughen-
ing of graphene 

 For next example, let’s discuss application of fracture 
mechanics to 2D materials, a relatively new class of mate-
rials that emerged over the last 15 years. As a most promi-
nent example among hundreds of different 2D materials, 
graphene is the strongest material with a theoretical 
strength of 130 GPa. However, recent experimental meas-
urements have demonstrated that graphene suffers a very 
low fracture toughness, close to that of ideally brittle solids 
[15]. Based on a fracture mechanics point of view, this low 
fracture resistance implies graphene is fragile under the 
presence of crack-like flaws. Therefore, how to toughen 
this atomically thin 2D graphene has become a key chal-
lenge for the study of fracture mechanics in 2D materials. 
As one attempt to resolve this problem, we have demon-
strated the possibility of using the effect of topological 
defects, e.g., disclinations and dislocations, to enhance the 
fracture toughness of graphene [16]. By introducing the so-
called topological toughening [17], we have generated 
tough graphene models, like rebar graphene [18], vein-
patterned graphene and nacre-like graphene, with various 
toughening mechanisms, including crack tip blunting, 



 
 

crack trapping, ligament bridging, crack deflection, daugh-
ter crack initiation and coalescence, pseudo-plastic defor-
mation and snap-through among multi-stable states [19] 
(Fig. 3a).  
 Given the strong correlation between toughening 
mechanisms and topological effects, one interesting ques-
tion can be raised: what is the optimal topological design 
for enhancing fracture toughness of graphene? This inverse 
design problem is challenging due to the strong nonlinear 
coupling between crack, topological defects and curvature 
in curved graphene samples. To address this challenge, we 
have been exploring the possibility of a machine learning 
based approach. By leveraging the strong learning ability 
of advanced machine learning algorithms, such as convo-
lution neural networks (CNN) and conditional generative 
adversarial nets (cGAN), we have obtained machine learn-
ing models capable of classifying tough/brittle candidates 
(compared with the flat pristine graphene) given the out-
of-plane geometry of the graphene samples within a finite 
design space. Further investigations showed machine 
learning models also can predict the important quantities 
regarding fracture/failure process, such as the distribution 
of maximal stress under the given load with high accuracy 
(Fig. 3c). Based on these preliminary results, we positively 
look forward to a machine learning based inverse design 
framework for topological toughening of graphene and 
other 2D materials.  

 
Figure 3. Topological toughening of graphene and ma-

chine learning based inverse design. 

3. Machine learning based atomic simulations of frac-
ture in heterogeneous 2D materials 

 In the third example, we present a machine learning 
based approach to conducting atomic simulations of frac-
ture in 2D materials. For dealing with nanoscale materials, 

conventional fracture mechanics is not always sufficient. 
In particular, the fracture behavior of atomic heterostruc-
tures in some 2D materials can be highly influenced by the 
local atomic orders at the crack tip. While the detailed 
atomic structures are usually neglected in continuum mod-
els, current frameworks of atomistic simulations also have 
their shortcomings. For example, density functional theory 
(DFT) calculation are often prohibitively expensive for 
fracture simulations and classical molecular dynamic 
(MD) simulations often suffer from a lack of accurate in-
teratomic potentials. 
 Recent advances in developing machine learning 
based interatomic potentials have provided a potentially 
viable way to bridge classical MD and DFT more effec-
tively in simulating fracture with ab initio accuracy. Along 
this path, we showed some preliminary efforts to train an 
artificial neural network based on ab initio mechanical 
dataset to characterize the typical fracture behaviors of 
graphene and h-BN (Fig. 4a). These simulations captured 
repeated crack branching and deflection in h-BN and brit-
tle fracture process in graphene. By comparing these two, 
we were able to identify a novel toughening mechanism 
induced by lattice asymmetry for h-BN (Fig. 4b). Careful 
analysis revealed that the crack branches and deflects due 
to the asymmetric edge elastic properties around the crack 
tip and crack edges swap their positions during propaga-
tion, which are only accessible in a asymmetric lattice like 
h-BN. Inspired by this example, simulations based on 
similar machine learning approaches are expected to be 
applicable to fracture study of other 2D materials. 

 
Figure 4. A machine learning based approach to atomic 

simulations of fracture in h-BN and graphene. 

Outlook 

 This lecture is intended to review some of the land-
mark basic theories in fracture mechanics, beginning with 
the most celebrated paper of Griffith. Fundamental theo-



 
 

ries and concepts include Griffith’s energy release rate of 
crack growth, Irwin’s stress intensity factor and universal 
crack-tip field, Dugdale-Barenblatt’s cohesive crack mod-
els, J-integral and HRR field in elastic-plastic fracture me-
chanics, JKR and Maugis’ models in adhesive contact me-
chanics, as well as Paris’ law of fatigue crack growth. 
These theories have fundamentally changed our view of 
fracture over the past century and will continue to play 
essential roles in interpreting and understanding material 
failure and design of next generations of advanced materi-
als and structures.  
 With ever increasing pace of innovation in novel ma-
terials and powerful computational tools, new fracture 
problems and methodologies are also broadening the plat-
form and opportunities for further development of fracture 
mechanics in this century. We have discussed some very 
preliminary examples of application of machine learning in 
fracture mechanics. To limit the scope of our discussion to 
problems closely related to the examples discussed here, a 
few open questions and potential research topics/directions 
are: 1) Can machine learning be used to predict the frac-
ture toughness/crack growth rate/mechanism from ob-
served complex fracture patterns under given load and 
sample geometry? 2) How can we optimize the training 
process of machine learning solutions in fracture mechan-
ics? 3) As an inverse design problem, how can we system-
atically enhance the fracture toughness of graphene and 
other 2D materials through topological toughening and 
machine learning? 4) With the help of machine learning 
based modelling, can we build a theory to describe the 
interaction between crack, topological defects and curva-
ture in 2D materials? 5) Can we use machine learning to 
identify the toughest 2D material? 6) What is the necessary 
and sufficient data set to train a machine learning based 
potential for reliable fracture simulations in 2D materials? 
7) How can we balance the accuracy and efficiency in ma-
chine learning based modelling of fracture in 2D materi-
als?  
 With endless developments of new materials and new 
experimental, analytical and computational tools, there 
will also be endless opportunities for fracture mechanics in 
the 21st century.   
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