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Engineer Energy Dissipation
in 3D Graphene Nanolattice
Via Reversible Snap-Through
Instability
Carbon micro/nanolattice materials, defined as three-dimensional (3D) architected meta-
materials made of micro/nanoscale carbon constituents, have demonstrated exceptional
mechanical properties, including ultrahigh specific strength, stiffness, and extensive
deformability through experiments and simulations. The ductility of these carbon micro/
nanolattices is also important for robust performance. In this work, we present a novel
design of using reversible snap-through instability to engineer energy dissipation in 3D gra-
phene nanolattices. Inspired by the shell structure of flexible straws, we construct a type of
graphene counterpart via topological design and demonstrate its associated snap-through
instability through molecular dynamics (MD) simulations. One-dimensional (1D) straw-like
carbon nanotube (SCNT) and 3D graphene nanolattices are constructed from a unit cell.
These graphene nanolattices possess multiple stable states and are elastically reconfigur-
able. A theoretical model of the 1D bi-stable element chain is adopted to understand the
collective deformation behavior of the nanolattice. Reversible pseudoplastic behavior with
a finite hysteresis loop is predicted and further validated via MD. Enhanced by these novel
energy dissipation mechanisms, the 3D graphene nanolattice shows good tolerance of
crack-like flaws and is predicted to approach a specific energy dissipation of 233 kJ/kg in
a loading cycle with no permanent damage (one order higher than the energy absorbed
by carbon steel at failure, 16 kJ/kg). This study provides a novel mechanism for 3D carbon
nanolattice to dissipate energy with no accumulative damage and improve resistance to
fracture, broadening the promising application of 3D carbon in energy absorption and
programmable materials. [DOI: 10.1115/1.4045544]

Keywords: constitutive modeling of materials, flow and fracture, micromechanics,
structures

Introduction
Carbon micro/nano lattices are a unique family of architected

metamaterials constructed frommicro/nanoscale carbon constituents
[1]. During the past few years, they have demonstrated exciting
potentials in reaching theoretical limits of mechanical performances
as well as integrating properties which are often mutually exclusive
through experimental studies and numerical simulations [2–8]. For
example, the glassy carbon nano-honeycomb lattice fabricated
through pyrolysis of polymeric microlattice has reached a compres-
sive strength of 1.2 GPa at a density of 0.6 g/cm3, approaching the
lower bound of the theoretical limit set by the bulk glassy carbon
[2]. Pyrolytic carbon nanolattices with topologies of octet- or
iso-truss have been demonstrated to possess a combination of high
specific strength, low density, extensive deformability, and flaw
tolerance, which are properties, in general, mutually exclusive in
conventional materials [3]. The record-breaking performances of
these carbon nanolattices are boosted by at least two factors: the size-
dependent properties of the constituents and thewell-designed lattice
architecture [1]. By reducing the length scale of the components,
such as beams or cell walls, to nanoscale, the constituents unlock
the properties which are close to their theoretical values. For

example, combining theoretical, computational, and experimental
studies [9–11], researchers have predicted that the critical size for
pyrolytic carbon being flaw tolerant is about ∼490 nm [3]. Ex-
perimental studies confirm that for carbon nanolattice with a charac-
teristic length (diameters of the struts) below this size, local failure
of the constituents becomes flaw insensitive, reaching the theoretical
strength of bulk carbon materials [2,3]. The benefit of being small is
further coupledwith the well-designed lattice architectures, resulting
in richer and more balanced combinations of desired properties. For
instance, via a systematic computational study of 3D graphene in the
topologies of triply periodic minimal surfaces, it has been demon-
strated that topology can strongly affect the elastic properties and
failure mechanisms of graphene nanolattices [4,5]. In short, the com-
bination of small-scale carbon constituents and unlimited architec-
ture designs of lattice opens a broad exploration space for better
material properties in carbon nanolattices.
Besides pursuing high specific strength, ductility is also parti-

cularly important to carbon nanolattices for robust performances
[7]. At the material level, the carbon constituents are intrinsically
brittle. Including bulk glassy carbon [2,6], the basic material
building block of most carbon nanolattices is graphene, a two-
dimensional (2D) atomically thin layer of carbon atoms connected
by sp2 hybrid covalent bonding [12]. As one of the strongest known
materials, graphene has a theoretical strength of 130 GPa [13] (two
orders larger than that of bulk glassy carbon, 2~3 GPa [2]).
However, experimental studies have unveiled that the fracture
toughness of graphene is only 16 J/m2 [14], which is close to that
of an ideally brittle solid [15]. As the characteristic length of
carbon nanolattices falls smaller to make use of the ultrahigh
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strength of graphene, it is also important to enhance the toughness
and ductility of the nanolattices. At the structure level, buckling is
an important mechanism to dissipate energy in nanolattice materials
under compression [16–18]. However, permanent and continuous
damage often accompanies buckling events. For example, it is
observed that for hollow metallic and ceramic microlattices, the
hysteresis loops of stress–strain curves shrink as the number of
loading cycles increases, especially over the first few cycles
[18,19]. Also, while being accessible under compression [20,21],
buckling can have a much limited effect on energy dissipation
under tensile loading. For instance, molecular dynamics (MD) sim-
ulations have demonstrated that under tension, graphene nanolat-
tices, such as graphene gyroids, dissipate energy mainly through
crack nucleation and propagation, which accumulate permanent
damage and degrade the material systems [4,5]. Given the great
potentials of carbon nanomaterials, it is important to enrich the
design library of carbon nanolattices with examples of novel
energy dissipation mechanisms in order to overcome this challenge.
Like buckling, snap-through instability has been a long-time

research topic [22–29]. Recent studies unveil some unique advan-
tages of this instability. On one hand, at macroscale, by carefully
designing and arranging the snap-through units in metamaterials,
sequential snap-through instabilities can be triggered under not
only compressive but also tensile loading conditions [25,28].
Cyclic loading tests demonstrate that these built-in instabilities
suffer little irreversible damage [28]. Metamaterials with snap-
through instability often exhibit multiple mechanically stable
states, which open doors to the design of shape-reconfigurable
materials [25]. On the other hand, at small scales, basic conceptual
units with mechanically bi-stable states and snap-through instability
[30–33] have been adopted to explain deformation behaviors of
phase transforming materials, including structure proteins with
compactly folded or unfolded domains [34,35] and shape memory
alloys undergoing martensitic phase transformation [36]. Such a
universal structure-to-property relationship indicates great potential

in engineering complex overall deformation behavior via bi-stable
units and snap-through instabilities.
The present study is aimed to address the challenge of toughening

carbon nanolattice with the potential of snap-through instability in
engineering overall material behavior. Through mechanism-
inspired structure design, MD simulations, and theoretical analysis,
we present a novel design of 3D graphene nanolattice with snap-
through instability and demonstrate that it can effectively dissipate
deformation energy without accumulating irreversible damages via
pseudo plastic deformation.

Unit Cell Design
We choose 2D graphene as a basis for our nanolattice design due

to its outstanding mechanical properties. To adapt to the 2D geom-
etry of graphene, we focus on shell-based designs.
At macroscale, numerous applications and studies have presented

various examples of shell structures with snap-through instabilities
[37–42]. Here, we borrowed inspiration from one of the simplest
cases, the flexible straw [43,44], which can change length by trans-
forming between the folded state and the extended state (Figs. 1(b)
and 1(c)). As shown in Fig. 1(a), the unit cell structure of such a flex-
ible straw is a pair of intersecting conical frustra (the outer frustum,
Q-T-P and the inner one, Q-P, intersecting at the folds P and Q). By
designing the geometrical parameters of the unit cell, a recent study
[45] has demonstrated that both the axially folded state and the
extended state can be mechanically stable (Figs. 1(b) and 1(c)) for
elastic shells. Here,we constructed a full-atommodel of the graphene
counterpart to such a unit cell by taking advantage of the methodol-
ogy of topological design [46–48]. As shown in Fig. 1(d ), phase field
crystal modeling [49–51] was adopted to simulate the growth of the
2D crystal on the designed geometry of the conical frustra. The
thermal stability of the obtained crystal structure was validated by
relaxing it under an NPT ensemble with a Nose-Hoover thermostat

Fig. 1 Unit cell of the shell structure in flexible straws and its nanoscale graphene counterpart
engineered via topological design. (a) Geometry of the unit cell structure in straws. (b) and (c)
The fully folded and fully extended states of flexible straws. (d ) Phase field crystal (PFC) simula-
tion of a 2D crystal sample growing on the designed shell surface. (e) The atomic structure of the
graphene unit cell with straw-like geometry after MD relaxation and the topological defects dis-
tributed at the inner and outer folds.
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[52] at 0 Pa and 300 K for 50 ps using MD (details of MD simula-
tions can be found in the Appendix). The dimensions of the
relaxed sample are listed in Fig. 1(e). It should be noted that even
through the relaxed model does not fully conform to the designed
geometry (Fig. 1(d )), the straw-like topology is stably maintained
(Fig. 1(e)). Further inspection showed that topological defects
[46,53], such as disclinations and dislocations, only concentrate at
the connections of the two frustra, accommodating and stabilizing
the curvature transition (Fig. 1(e)). The inevitable presence of topo-
logical defects, their residual stress [47] as well as the Van derWaals
(VdW) interactions [54] between graphene frustra make the atomic
sample different from its counterpart at large scale.
To explore the snap-through instability and possible mechanically

stable states of such straw-like unit cells, uniaxial tension tests were
performed by applying a constant strain rate of 108/s to the simulation
box along the axial direction. During the test, a periodic boundary
condition was applied along the axial direction and an NVT ensem-
ble with a Nose-Hoover thermostat [52] was adopted to maintain
a constant temperature of 10 K. The force–strain and potential
energy–strain curves are shown in Fig. 2(a). The potential energy
curve shows two parabolic-like parts centered around the folded
state (State A) and the extended state (State D), indicating both
states have positive stiffness. Relaxation and loading tests via MD
demonstrated they are mechanically stable. In the transition region,
the force–strain curve suffers a non-positive derivative, resulting
from the snap-through instability and the corresponding negative
incremental stiffness. Through the snap-through instability, the
unit cell achieves a 33% elongation without any irreversible
damage to the crystal structure (Fig. 2(b)). Careful inspection
showed that the snap-through event mainly takes place at the inner

frustum (P-Q in Fig. 2(b)) with the outer frustum (Q-T-P in
Fig. 2(b)) serving as a constraint to its deformation. At the folded
state, the inner frustum is already self-stressed under no external
loading (Fig. 2(c)). As the external tension increases, the highly com-
pressive stress state is pushed toward the inner fold, Q (Fig. 2(d )). At
the critical moment, the axial symmetry of the deformation is broken
(Fig. 2(e)) and the inner frustrum flips out (Fig. 2( f )), resulting in a
snap-through event (Fig. 2(g)). Compared to the folded state
(Fig. 2(c)), the residual stress in the inner frustrum is reduced in
the extended state (Fig. 2( f )). Correspondingly, the potential
energy in the extended state is lower than that of the folded state
(Fig. 2(a)) even through the two share the same atomic topology.
In short, the straw-like unit cell possesses two mechanically stable
states and can snap-through between them under tension, suffering
no permanent damage. It is also interesting to note that similar
bi-stable states and snap-through events have been studied in
shell systems at macroscale. For example, via experiments and
finite element simulations, mirror buckling and snap-through
events in spherical cap shells have been studied, where it is demon-
strated that the initial asymmetrical buckling can make the snap-
through more robust [41]. Recently, an energy landscape analysis
is conducted for cylindrical shells. Such a detailed energy landscape
has proved to be an insightful guidance for designing controll-
able buckling paths between different states [42]. Inspired by these
advances in shell buckling study, we wish to point out that it
is very likely the straw-like unit cell presented here can be fur-
ther tuned for more optimized mechanical behavior. For instance,
by adjusting its geometrical dimensions, defect/imperfection
distributions and residual stress fields, the unit cell may demonstrate
a higher stress level for snap-through transition and a larger

(a) (b)

(c)

(e) (f ) (g)

(d)

Fig. 2 The two stress-free stable configurations of the unit cell and the process of a snap-
through event. (a) The force–strain and potential energy–strain curves of the unit cell transform-
ing from the folded state to the extended state. (b) Geometry of the two loading-free equilibrium
configurations of the unit cell. The two halves of the unit cell are in the folded and extended
states, respectively. (c)–(f ) Snapshots of a snap-through event during a tension test in MD simu-
lation. (g) 2D sketch of the deformation process of the inner frustrum during the snap-through
process.
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elongation between the folded and the extended states. We leave
this optimization to a future study and focus on the coupling
between the unit cell behavior and the lattice-level design in the
current study.
In the following section, we combine the unit cell with different

lattice designs to construct 1D and 3D graphene nanolattices and
study their collective deformation behaviors, aiming at engineering
effective energy dissipation by leveraging the effect of the snap-
through instability.

Lattice Design: 1D and 3D Cases
Straightforwardly, by repeating the unit cell along the axial direc-

tion, we obtain the 1D lattice of a straw-like CNT (SCNT). Because
each unit cell within the SCNT can choose either the folded state or
the extended state, the SCNT sample can havemultiplemechanically
stable states. Under tensile loading along the axial direction, the
SCNT can transform through these states and achieve different
axial lengths, making it a reconfigurable 1D nanolattice. We vali-
dated this capability via MD simulations. One example SCNT with
three unit cells is transformed from the fully folded configuration
to the fully extended state under tensile loading in MD (Movie
M1).3 As shown in Fig. 3, four different equilibrium lengths are iden-
tified from MD (Fig. 3(a)). During the tensile loading process, they
are separated by discrete snap-through events of individual unit
cells (Fig. 3(b)). At each instability event, the stored strain energy
(solid line in Fig. 3(b)) is partially released and dissipated into the
environment via thermal vibrations. Correspondingly, the loading
force drops, leaving a saw-teeth like force–strain curve (dash line
in Fig. 3(b)).
One limitation for this 1Dnanolattice of SCNT is that it can be hard

to transform the extended configuration back to the folded one due to
global axial buckling of SCNT under compression. As shown in
Figs. 3(c) and 3(d ), under compression, even though the straw-like
unit cell can snap back to the folded state, the SCNT with three
unit cells buckles along the axial direction before the backward snap-
through can happen. This asymmetry in tension and compression
limits the reconfigurability of 1D SCNT in cyclic loading. Next,
we construct a 3D lattice to overcome this limitation.
As shown in Fig. 4(a), parallel 1D SCNTs are assembled into a

bundle-like architecture according to a square lattice with a lattice
parameter, a, forming a new 3D graphene nanolattice. We chose a
to be smaller than the outer diameter the SCNTs, 2R2 (Fig. 1(a)),

so that the neighboring SCNTs are interconnected through covalent
bonding. We designed the atomic structure using topological design
[46]. As shown in Fig. 4(b), topological defects appear and help to
accommodate the curvature transition at the connections. To investi-
gate the deformation behavior of such 3D graphene nanolattices, we
performed tension–compression cyclic loading along the vertical
directions (which is the axial direction of the SCNTs) using MD. It
is demonstrated that these 3D graphene nanolattices can snap
forward and backward between the fully folded and extended
states under cyclic loading without suffering global buckling or irre-
versible damage (see Movie M2 and M3 for details),4 which makes
them elastically reconfigurable.
It should be noted that the number of unit cells along the axial

direction can affect the deformation behavior of the 3D graphene
nanolattices. In a reference case of one single unit cell under
cyclic loading along the axial direction (Figs. 4(c) and 4(d )), it is
observed that the mechanical responses along tension and compres-
sion paths show very limited differences. For example, in Figs. 4(c)
and 4(d ), the stress–strain and strain energy density–strain curves of
tension and compression tests are close to each other. Correspond-
ingly, very limited energy can be dissipated during such a
displacement-controlled loading loop. However, the energy dissipa-
tion is amplified when there is more than one unit cell along the
axial direction. For instance, in Figs. 4(e) and 4( f ), a sample with
3-by-3-by-3 unit cells is tested under the same loading condition
(Movie M2 and M3).5 The stress–strain history takes different
paths under tension and compression. Correspondingly, a hysteresis
loop appears, and the energy associated with it is dissipated after the
cycle (Fig. 4(e)). Intuitively, this hysteresis behavior can be related
to the snap-through instability. As shown in Figs. 4(e) and 4( f ), the
snap-through events correspond to the sudden jumps in the stress–
strain and strain energy–density curves. Two observations can be
made here. First, the pairs of neighboring snap-through events
from tension and compression paths (such as S− T i and S−T (7
− i), where i= 1, 2, 3, in Figs. 4(e) and 4( f )) happen at different
strain values. Second, in the regions with a strain value between
one pair of such snap-through events, the strain energy density
curves along tension and compression paths deviate from each
other (Fig. 4( f ), regions with dash line arrows), indicating that
the system can be in/near configurations with different equilibrium
lengths and stiffnesses. To systematically explain the relationship
between the hysteresis behavior, snap-through instability, and

(a) (b) (c) (d)

Fig. 3 1D lattice design: a straw-like CNT. (a) The four stress-free equilibrium configurations with different lengths. (b) Force–strain
and potential energy–strain curves during transition from the fully folded stated to the fully extended state under tension via MD.
(c) One unit cell compressed back to its folded state without suffering axial buckling. (d ) Axial buckling of the SCNT with three unit
cells under compression.

3https://bo-ni.github.io/snapping-3D-graphene/videos/

4See Note 3.
5See Note 3.
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multi-stable configurations, a theoretical model is developed in the
next section.

Theoretical Model
In this section, we constructed a theoretical model to explain our

observation of 3D graphene nanolattice with snap-through stability
and predicted the collective behavior of samples with large
members of unit cells.
Phenomenologically, our 3D graphene nanolattice can be

modeled as a series of identical unit cells connected one after
another along the axial direction. For each unit cell, there exits
two equilibrium configurations with different lengths and stiff-
nesses. Correspondingly, we adopted a theoretical model of 1D
chain of bi-stable elements to study the nanolattices (Fig. 5(a)).
Similar models have been successfully applied to understand the
rate independent hysteresis of phase transforming materials
[30,31,55], protein deformation [56,57], and deformation behavior
of polymeric foams and carbon nanotube foams [58].

First, the deformation behavior of the unit cell of our 3D gra-
phene nanolattice is represented by a bi-stable elastic element.
Based on our MD results (Figs. 4(c) and 4(d )), the deformation
of the unit cell under both tension and compression can be rep-
resented by a single stress–strain curve with no hysteresis loop
(Fig. 5(b)), σ= σbi(ɛ). Accordingly, the tangential stiffness Et,
defined as Et = σ′bi(ε) = ∂σ/∂ε, varies, where σ and ɛ are the stress
and strain along the axial direction of the unit cell. Based on the
sign of tangential stiffness, there exist two stable phases with Et>
0, namely Phase I for ε < εTI and Phase II for ε > εCII , separated by
a spinodal region with Et< 0, where εTI and εCII are strain values
reaching zero tangential stiffness, i.e., σ′bi(ε

T
I ) = σ′bi(ε

C
II ) = 0. The

presence of this spinodal region breaks down the one-to-one
mapping between stress and strain for σ∈ (σC, σT) and
ε ∈ (εCI , ε

T
II ), where σC and σT are the lower and upper bounds of

stress in the spinodal region, σC = σbi(ε
C
II ), σ

T = σbi(ε
T
I ), ε

C
I and εTII

satisfy σbi(εCI ) = σC in Phase I and σbi(εTII ) = σT in Phase II
(Fig. 5(b)). For our specific unit cell with σC< 0 < σT, there are

(a)

(c) (d )

(e) (f )

(b)

Fig. 4 3D design: 3D graphene nanolattice made of straw-like graphene unit cells. (a) The square
lattice structure of SCNT bundles. (b) The covalently bonded connection between neighboring
unit cells and the topological defect distribution nearby. (c) and (d ) The stress–strain and
strain energy density–strain curves of a single unit cell under a tension–compression loop
between the folded and extended states. (e)–(f ) The stress–strain and strain energy density–
strain curves of a 3D graphene nanolattice with 3-by-3-by-3 unit cells under a tension–compres-
sion loop between the folded and extended states.
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three stress-free equilibrium configurations (σ= 0). The one in the
spinodal region is not mechanically stable while those two in
Phase I and Phase II are, which makes our unit cell a bi-stable
elastic element defined by a single stress–strain curve as shown in
Fig. 5(b).
Second, consider the static/quasi-static deformation of the 1D

chain of N≥ 2 such bi-stable elements connected in series. In
equilibrium, the strain of the chain, �ε, is the average over all ele-
ments and the stress of chain, �σ, is continuous through all
members

�ε =
1
N

∑N
i=1

εi

�σ = σi, i = 1, 2, . . . , N

(1)

where ɛi and σi are strain and stress of the ith element in the
chain. Combining Eq. (1) with the constitutive relation of the
individual element

σi = σbi(εi), i = 1, 2, . . . , N (2)

as depicted numerically in Fig. 5(b), all possible equilibrium con-
figurations can be found for a given �σ or �ε. However, it should be
noted that the available equilibrium configurations are not neces-
sarily stable. Here, we are only interested in those which are
mechanically stable to be physically meaningful (and relevant
to MD simulations at finite temperature). The multiple equilib-
rium configurations can be distinguished by the state of the
system, i.e., the numbers of elements in the three phases, (nI,
nS, nII), where nI, nII, and nS are numbers of elements in Phase
I, II, and the spinodal region, respectively, nI+ nII+ nS=N. Pre-
vious studies on similar bi-stable element chains [30,59] have

shown that the equilibrium configuration is mechanically stable
only if

nS = 0 or
nS = 1
∂�σ
∂�ε

< 0

⎧⎨
⎩ (3)

i.e., the equilibrium configurations with no element in the spinodal
region, nS= 0, are stable; for systemwith only one element in the spi-
nodal region, nS= 1, it is stable only if the overall tangential stiffness
is negative. Combining this criterion with the constitute law of indi-
vidual bi-stable elements, Eq. (2) and the constraint of the 1D chain,
Eq. (1), we can obtain the stable branches of deformation behavior of
the 1D chain under all possible system states, (nI, nS, nII). One
example of these branches in stress–strain and strain energy
density–strain curves is shown in Figs. 5(c) and 5(d ) (black solid
lines and thick dash lines) for a chain of N= 3. There exist N+ 1
branches for system states with nS=0, i.e., (N− i, 0, i), i=0, 1,…, N
(black solid lines in Figs. 5(c) and 5(d )). They all have a convex
shape in strain energy density curves (Fig. 5(d )) with one local
minimal (Si, i= 0, 1,…,N ), indicating positive stiffnesses and stress-
free equilibrium configurations. They are terminated at the points
(Ti, Ci, i= 1, 2, …, N ) where the stress reaches the critical values
(σT or σC) to push one of their elements into the spinodal region.
Interestingly, these termination points make the N+ 1 branches
overlap with each other over finite strain intervals. These N+ 1
stable branches are connected by another N branches for system
state with nS= 1 (black dash lines in Figs. 5(c) and 5(d )), forming
a connected path. However, for our graphene nanolattice case,
except for a small portion, T3-J1 (thick dash line), most parts of
the N branches with nS=1 have a positive tangential stiffness and
are therefore not stable. Consequently, the available stable branches
(S0-T1, C3-S1-T2, C2-S2-T3-J1, C1-S3 in Figs. 5(c) and 5(d ))
between the fully folded and extended states (S0-S3) are

Fig. 5 A theorical model of the 1D chain of bi-stable elements. (a) Abstracting the graphene
nanolattice with a straw-like unit cell into a 1D bi-stable element chain. (b) The constitutive law
of a single bi-stable element based on the MD data. (c) and (d ) Theoretical predictions of the
stable deformation branches and the paths taken under tension and compression loading on
the stress–strain and strain energy density–strain curves.
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disconnected fragments with strain overlapping in stress–strain and
strain energy density–strain curves.
It is the discontinuity and overlapping of the stable deformation

branches that distinguish the collective behavior of elements in
the 1D chain from that of one element in monotonical and cyclic
loading. First, consider a monotonically increasing tensile loading
applied to the chain of three elements in a displacement-controlled
way (S0-T1-K1-T2-K2-J1-K3-S3 in Figs. 5(c) and 5(d )). Starting
from the fully folded state, S0, in the branch of (N, 0, 0), the
system raises the stress and accumulates energy until reaching
the end of this branch, T1 with a stress of σT. The continuity of
the overall strain required by the displacement-controlled loading
condition can be used to find the next stable deformation branch.
Accordingly, in a discrete manner, the system has to switch to the
next available branch, (N− 1, 0, 1), at the point of the same strain
via a snap-through event. Assuming the system is overdamped,
this sudden change of system state results in a drop in the stress
response and partially releases the energy of the system, which is
not observed in the case of the one bi-stable element. Similar
changes of system state reappear at the right end of the each
stable branches until the fully extended state, SN, on the last
branch (0, 0, N) is reached, leaving behind a saw-teeth like
stress–strain curve. During this loading path, the dissipated
energy includes not only the work done by the external loading
but also the energy difference between the stress-free configura-
tions, SN and S0. Second, consider a full loop of tension–compres-
sion loading. Like in the tension path, the saw-teeth stress–strain
curve and sudden drops in system energy also appear at the left
end of each stable branch (Ci, i= 1, 2, 3, … in Figs. 5(c) and
5(d )) along the compression path from SN to S0. Moreover, due
to the overlapping of different stable deformation branches in
strain intervals, the system can choose among different stable
branches under tension and compression over the same strain inter-
val. Correspondingly, over these intervals the system has different
states, showing different stiffness, stress, and strain energy
responses (shaded regions in Figs. 5(c) and 5(d )). The separation
of loading paths in tension and compression results in hysteresis
loops under cyclic loading, which is also absent in the single
element case. After a full loop, the system can fully recover with
no energy change. The nontrivial work done by the external
loading is fully dissipated through the hysteresis loops between
tension and compression paths in the stress–strain curve. In
summary, the theoretical model predicts that the collective behavior
of bi-stable elements in a 1D chain gives birth to the discontinuity
and overlapping of stable deformation branches. The switching
between different branches results in saw-teeth stress–strain
curves under monotonical loading. The different choice of the over-
lapped branches yields the hysteresis loops in cyclic loading. These
predictions explain the behaviors observed in MD simulations
(Figs. 4(e) and 4( f )).

Pseudoplastic Behavior in Graphene Nanolattices With
Large Numbers of Unit Cells
To quantitatively validate the theoretical model, we compare its

prediction to the results of MD simulations. A tension–compression
test was applied to a 3D graphene nanolattice with 3-by-3-by-10
unit cells using MD (Movie M4 and M5).6 Its result is compared
with the prediction of the theorical model for the case of N= 10.
It should be noted that there exist some important differences
between the assumptions of the theoretical model and the MD simu-
lation conditions. In the theoretical model, it is assumed that the
system is overdamped, and the deformation is quasi-static (i.e., no
kinetic effect has been included) and the strain rate is infinitely
low. In contrast, the MD simulations are performed with a constant
temperature of 10 K and a relatively high strain rate of 108/s. Under

such a simulation condition with kinetic effects, the snap-through
events can be triggered earlier; several unit cells may snap at the
same time. After snap-through events, the suddenly released defor-
mation energy may excite extra fluctuations and it takes time for the
associated thermal energy to be absorbed by the environment (see
Movies M4 and M5).7 In spite of these differences, as shown in
Figs. 6(a) and 6(b), the history of stress and strain energy density
during the full loading cycle still shows a reasonably good agree-
ment between MD results and theoretical predictions. This consis-
tency indicates that the deformation behavior of the graphene
nanolattice in this study is not sensitive to strain rate and can be
well captured by both MD and the theoretical model.
Comparing the MD results of cases for N= 3 (Figs. 4(e) and 4( f ))

and N= 10 (Figs. 6(a) and 6(b)), it is also noted that as the number
of the unit cell along the axial direction increases, the amplitude of
stress oscillations along tension/compression paths decreases and
the area of hysteresis loop increases. Based on this observation, it
becomes interesting to predict the asymptotic behavior of nanolat-
tice samples with large numbers of unit cells and ask what is the
upper bound of energy dissipation for this nanolattice design.
While the full-atomMD simulations may be limited by the available
computational power, the efficient theoretical model developed
above is suitable for this task.
By continuously increasing N (from 10 to 1000) in the theoretical

model, we observed that the deformation behavior converges to a
pseudoplastic behavior with a finite hysteresis loop. For stress
level between σC and σT, as N increases, the available stable defor-
mation branches (gray lines in Figs. 6(c) and 6(d ) for N= 1000)
increases and become densely packed between the fully folded and
extended configurations. The distances between neighboring
branches become smaller and the overlapping regions become
larger. Correspondingly, the amplitude of stress drops due to switch-
ing between two neighboring branches decreases and averaged stress
levels approach ending points of the stable branches, which are σC or
σT. The plasticity-like behavior with flow stress σC and σT in tension
and compression, respectively, is observed (K-L and M-N in
Fig. 6(c)). However, there is no irreversible damage accumulated
in this reconfigurable nanolattice during the process. So, we term
this as a pseudoplastic behavior. The hysteresis loop formed by
these two stress plateaus is finite because the branch overlapping
only exists over the strain interval, (εCI , ε

T
II ). The left and right bound-

aries of this hysteresis loop are confined by the stress–strain curve of
the constituent bi-stable element between σC and σT in Phase I and
Phase II, respectively (K-N and M-L in Fig. 6(c)). For stress level
beyond the interval (σC, σT) or strain level beyond (εCI , ε

T
II ), the

only stable states are (N, 0, 0) or (0, 0, N ) and the nanolattice
behaves in the same way as one unit cell does.
It is interesting to note that the overall behavior of such a nano-

lattice with a large number of unit cells is different from but
strongly connected to that of its constituent element. It is the
lattice arrangement that enables the novel deformation behavior
in the assembly level, such as pseudoplasticity and hysteresis.
At the same time, the deformation behavior of the single bi-stable
element determines the bounds of the pseudoplasticity and hyster-
esis loops at the lattice level. The strong connection between the
behavior of the overall lattice and its constituent provides a prom-
ising way to preserve superior properties of nanoscale constituent
up to the lattice scale. For example, the reversible snap-through
capability of the specific straw-like unit cell studied in the
present work benefits from the ultrahigh strength, in-plane stiff-
ness [13], and outstanding bending flexibility [60] of graphene.
With a density of 453 kg/m3 (in the fully folded state), the gra-
phene nanolattice made of such unit cells is predicted to have
flow stresses of 39 MPa in tension and −163 MPa in compression
over a strain ranging between −0.18 and 0.49. The energy dissipa-
tion per unit mass for a full loop between the fully folded and
extended states can approach 233 kJ/kg, and this process is

6See Note 3. 7See Note 3.
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Fig. 6 Validating the theoretical model and predicting the collective behavior of nanolattice with
a large number of unit cells. (a) and (b) MD results and theoretical predictions of stress–strain and
strain energy density–strain curves of the nanolattice with ten elements along the axial direction
during a tension–compression loop. (c) and (d ) Theorical prediction of the deformation of a nano-
lattice with 1000 elements along the axial direction and its comparison to that of a single bi-stable
element.

Fig. 7 MD simulation of a tension test of a graphene nanolattice slab with an edge crack.
(a) Geometry of the graphene nanolattice. (b) The overall stress–strain curve. (c) Crack trapping
due to the band-like region around the crack tip transformed into the extended state via snap-
through events.
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purely elastic with no permanent damage. Optimization of the
geometry and topological defect distribution of the unit cell may
further improve this specific energy dissipation density of the
nanolattice. Meanwhile, for carbon steel SAE 1020 annealed,
with a density of 7872 kg/m3 and a toughness of 128, 755 kJ/
m3, the energy absorption per unit mass at failure is 16.4 kJ/kg,
which is one order of magnitude smaller than the predicted
value of the graphene nanolattice studied here.
At last, we demonstrated the effect of the energy dissipation

mechanisms enabled in this novel 3D graphene nanolattice on
resisting crack propagation. As shown in Fig. 7, MD simulation
of a uniaxial tension test in a slab of the graphene nanolattice
200 nm in length and 100 nm in height with a 50 nm edge crack
was performed (Movie M6).8 Unlike the uniform loading in previ-
ous uniaxial tension tests, high stress concentration is expected
around the crack tip region to promote crack propagation [15].
However, in the graphene nanolattice, it is observed that unit cells
near the crack tip transform from the folded state into the extended
state first. Correspondingly, the stress near the crack tip region is
mostly released and the crack tip is trapped (Fig. 7(c)). As the trans-
formation region expands through the lattice, the overall stress level
also decreases (Fig. 7(b)) due to the reconfiguration of the nanolat-
tice. This example demonstrates that the graphene nanolattice with
snap-through instability can tolerate crack-like flaws and behave in
a ductile manner within the pseudoplastic deformation region.

Conclusions
Carbon nanolattices have demonstrated great potential in achiev-

ing outstanding mechanical performances, including a combination
of high strength, low density, good flaw tolerance, and extensive
deformability, which are rarely seen in conventional materials. In
the present study, we have investigated a type of 3D graphene nano-
lattice for better ductility through an efficient energy dissipation
mechanism design. Specifically, snap-through instability is imple-
mented in the unit cell level via a straw-like graphene cell. With
simple lattice architectures, 1D and 3D graphene nanolattices
made of such unit cells demonstrate multiple stress-free equilibrium
configurations and are elastically reconfigurable. Through tension
and compression tests in MD, stress plateaus with saw-teeth-like
oscillations and finite hysteresis loops emerge as the number of
unit cells in the lattice increases. This lattice-level deformation
behavior is explained by a theoretical model of a 1D bi-stable
element chain. The theoretical model identifies multiple stable
deformation paths available to the lattice. It is the discontinuity
and overlapping of these deformation paths that give birth to a pseu-
doplastic deformation. Interestingly, the theoretical model predicts
that the pseudoplastic behavior of the nanolattice is bounded by
the deformation behavior of the unit cell. Benefiting from the out-
standing property of the nanoscale unit cell, nanolattices with
large numbers of such unit cells are predicted to achieve a specific
energy dissipation of 233 kJ/kg during a full loading cycle without
any irreversible damage, which is one order of magnitude larger
than the energy absorbed by carbon steel at failure (16.6 kJ/kg).
With such efficient energy dissipation mechanisms enabled by
snap-through instability, the graphene nanolattice is demonstrated
to be able to trap and postpone crack propagation in MD,
showing good tolerance of crack-like flaws and enhanced ductility.
This novel capability may broaden the potential application of 3D
graphene nanolattices in energy absorption [26] and programmable
materials [61].
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Appendix
MD Simulations. MD simulations of graphene nanolattices

were carried out via large-scale atomic/molecular massively parallel
simulator (LAMMPS) [62]. Visualization was processed via soft-
ware package OVITO [63]. The interatomic forces were described
by the adaptive intermolecular reactive empirical bond order
(AIREBO) potential [64]. To avoid a nonphysical post-hardening
behavior known to exist for the AIREBO potential, the smaller
cutoff distance in the switching function of AIREBO was taken
to be 2.0 Å, as suggested by previous studies [14,48,65].

List of Movies of MD Simulations9

M1. Uniaxial tension test of a SCNT nanolattice with three unit
cells.

M2. Uniaxial tension test of a 3D graphene nanolattice with
3-by-3-by-3 unit cells.

M3. Uniaxial compression test of a 3D graphene nanolattice with
3-by-3-by-3 unit cells.

M4. Uniaxial tension test of a 3D graphene nanolattice with
3-by-3-by-10 unit cells.

M5. Uniaxial compression test of a 3D graphene nanolattice with
3-by-3-by-10 unit cells.

M6. Uniaxial tension test of a graphene nanolattice slab with an
edge crack.
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