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ABSTRACT 

 
Identifying elastic modulus distribution based on displacement/strain 

images in elastography and other non-destructive evaluation (NDE) techniques can 

be challenging, especially when real-time response and high-throughput 

applications are in demand. In this letter, to address this inverse problem challenge, 

we propose a deep learning (DL) approach and demonstrate its advantages in 

achieving high efficiency and accuracy. By carefully designing the sampling spaces 

of smooth distributions of shear modulus, we demonstrate that a conditional 

generative adversarial network (cGAN) can successfully learn the high-

dimensional mapping between distributions of strain and shear modulus under a 

compression test, even if trained over a limited portion (20%) of the sample space. 

At deployment, this model needs not to solve any variational problems proposed in 

conventional methods and achieves good accuracy (99%). This DL approach has 

potential for applications in real-time elastography and high-throughput NDE 

techniques. 
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IMPACT STATEMENT 

 
Non-destructive evaluation (NDE) of elastic modulus in materials has broad 

applications in fields such as geological exploration, quality evaluation and medical 

diagnosis. A key to these techniques is to solve the inverse problem of identifying 

the distribution of elastic modulus. While conventional theories and numerical 

methods often involve solving multiple variational problems iteratively for each 

individual case, the demand of real-time response and high-throughput application 

of NDE is growing, especially for advanced manufacturing and clinical practices.  

To address this challenge, in this letter, we leverage some of the recent 

progress in data science and propose a deep learning (DL) approach to solve the 

inverse problem of modulus identification in elasticity. By designing the sampling 

spaces of smooth distribution of shear modulus and adopting a conditional 

generative adversarial network (cGAN), we demonstrate that the DL approach can 

learn the high-dimensional mapping between distributions of strain and shear 

modulus via training over a limited portion of data. Also, the model can be rapidly 

deployed with high accuracy, bypassing the iterative solving process in the 

conventional methods. This work broadens the way of solving challenging inverse 

problems that aim for applications in real-time elastography and high-throughput 

NDE techniques. 

Keywords: inverse problem, elasticity, deep learning, conditional generative 
adversarial network, real-time response, high throughput 
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INTRODUCTION 

Due to their non-invasive nature, non-destructive evaluation (NDE) 

techniques for identifying elastic modulus distribution in materials have attracted 

increasing attention in various fields, ranging from geological exploration (1, 2), 

construction quality control (3, 4), composite material evaluation (5, 6), to medical 

diagnosis (7, 8). A common core of these techniques is to solve inverse problems 

in elasticity. For example, elastography aiming at distinguishing tissues based on a 

quantitative distribution of elastic modulus has gained broad applications in breast 

tumor characterization and hepatic fibrosis staging (9). During a quasi-static 

ultrasound elastography (7), external compression is applied to the tissue of interest 

and the deformation fields are estimated using two-dimensional (2D) correlation of 

ultrasound images (Figure 1a and 1b). To identify the abnormal tissues based on 

elastic heterogeneity (Figure 1c), an inverse problem of reconstructing the 

distribution of elastic modulus based on the displacement/strain images needs to be 

addressed. Thus, solving such inverse problems plays key roles in successful 

applications of elastography. 

Generally speaking, solving inverse problems of elasticity accurately and 

efficiently can be challenging, especially when real-time response (10) and high-

throughput applications (11) are in demand. Comparing to the forward problem (i.e., 

to obtain the deformation field under given elastic properties), the inverse problem 

is more expensive to solve. The problem to find an elastic modulus distribution that 

minimizes the difference between the predicted and observed deformation fields is 

often treated as an optimization task under the constraint of elasticity theory in 

conventional methods such as the equation error approach (12) and adjoint-

weighted approach (13, 14), and solving a nonlinear optimization problem can be 

costly in practice. For example, in the adjoint-weighted approach (13), the inverse 

problem is solved through an iterative process that involves multiple forward 

problems within each iteration. Thus, the total computational cost is far beyond that 

of solving a forward problem. Also, the whole process needs be repeated for 

different input of displacement images. At the same time, there is growing demand 

for real-time response and high-throughput applications as elastography and other 
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NDE techniques continue to advance in multiple clinical applications and advanced 

manufacturing. For example, tissue elastography in real time shows promising 

applications in diagnosing breast, prostate, thyroid and pancreatic diseases, even in 

hope to substitute biopsy (15). Ultrasound based NDE techniques have proven 

potentials in high-throughput screening and fabrication of laser additive 

manufactured metallic glasses (11). These emerging opportunities and demands are 

calling for more advances in solving the inverse problem of modulus identification 

in elasticity with high efficiency and accuracy. 

Recent progresses in machine learning (ML) provide a new angle to address 

this challenge. ML, especially deep learning (DL), has proven capable of learning 

hidden relations between complex patterns from large amount of data (16-20). For 

example, in computer vision, deep convolutional neural networks (CNN) can 

classify millions of images into thousands of classes with high accuracy 

approaching or even surpassing human performance (16). In engineering 

applications, after proper training over representative data, DL models can learn 

nonlinear mapping between density-potential and energy density in density 

functional theory (DFT) (17), many-body interatomic potential in molecular 

dynamics (18), constitutive relations in finite element methods (FEM) (19) as well 

as the temporal and spatial behavior history of a dynamics process (20).  

The advanced learning capability and accessibility to representative data 

make DL models promising candidates to tackle the inverse problem in elasticity. 

First, from a data-driven point of view, finding suitable elastic modulus distribution 

to generate an observed deformation field relies on capturing the hidden mapping 

between the two fields. The learning and representation capability of DL models 

make it possible to target such a high-dimensional nonlinear mapping (Figure 1d). 

For example, conditional generative adversarial networks (cGAN) can handle 

mapping between images and find applications in image processing tasks such as 

image reconstruction, segmentation and detection (21-23). Also, for the training of 

DL models, affordable accesses exist to collect reliable data in elasticity problems. 

By solving the forward problem, which is relatively easy to compute, the data of 

modulus distribution and deformation field can be obtained (Figure 1e). For 
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example, FEM can be used to calculate the deformation fields for given modulus 

distribution to sufficient precision (24). Based on these advantages, DL models 

show unique potential in handling the inverse problem of identifying modulus 

distribution in elasticity in a data-driven way.  

It should be noted that DL models have already been applied to improve the 

performance of medical imaging including elastography. For example, CNN 

models have been developed as a robust and accurate method to reconstruct the 

elastography images of strain field from radio frequency data (25). It has been 

demonstrated that CNN classifiers can learn to distinguish malignant tumors from 

benign ones in breast lesions based on displacement images in elastography (26). 

However, most of these developments deal with end-to-end applications while the 

middle step of solving the inverse problem of elasticity is often circumvented (26). 

In the present work, we focus on the inverse problem of identifying modulus 

distribution in elasticity itself and propose a DL approach to address this 

fundamental problem in elasticity. By designing representative sampling spaces for 

smooth distribution of shear modulus (Figure 1f) and constructing a cGAN model 

(Figure 1d), we demonstrated that the proposed DL approach can learn the high-

dimensional mapping between distributions of strain and shear modulus via training 

over a limited portion of data and achieve high efficiency and accuracy at 

deployment. 
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Figure 1. A deep learning approach to the inverse problem of modulus identification in elasticity. (a) A 
schematic of static elastography using ultrasound. (b) Simulated images of deformation filed obtained 
from elastography. (c) Making medical diagnosis based on the distribution of elastic modulus. (d) A 

deep learning model with the structure of cGAN. (e) Collecting data by solving the forward problem of 
elasticity with reliable numerical simulations. (f) Constructing representative sampling spaces for the 

distribution of elastic modulus.  

 

RESULTS 

Without loss of the generality, the present work borrows the set-up of a 

static elastography using ultrasound and focuses on a prototype inverse problem of 

identifying the distribution of shear modulus of a nearly incompressible elastic 

material based on strain images (13). As shown in Figure 2a, a nearly 

incompressible isotropic linear elastic material occupies a 2D domain, 

( ) ( )0, 0,L LΩ = × . A uniaxial compressive load is applied along the vertical direction 

by prescribing the displacement on the top and bottom edges with 2 20 @ 0u x= =  

and 2 20.001 @u L x L= − = while the left and right remain traction-free. To avoid rigid 

body translation, the origin is fixed horizontally with ( )1 0@ 0,0u = . The distribution 

of the strain component, ( )22 1 2,x xε , also called elastogram, is obtained by 

processing ultrasound measurements. The inverse problem is to recover the 

distribution of shear modulus, ( )1 2,x xµ , based on the strain image of 22ε . To avoid 
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the ill-posedness of the inverse problem, we assume the shear modulus to be 

constant on the edges (27).  

The goal here is to present a DL approach to address a prototype inverse 

problem in elasticity. We demonstrate that, by collecting reliable data over 

representative sampling spaces and capturing the mapping between strain and 

modulus with a suitable cGAN model, the DL approach can achieve high efficiency 

and accuracy at deployment. The DL approach developed here can be easily 

extended for other specific cases and applications. 

Building representative sampling spaces 

In the DL approach, the underlying relation between shear modulus and 

strain filed is conveyed implicitly via data. Thus, collecting relevant and 

representative data often plays a key role in such a data-driven approach.  

While the possible distributions of shear modulus can be infinite, here we 

mimic the situation in breast cancer diagnosis and focus on the relevant matrix-

inclusion cases with smooth transition, i.e.,  

 ( ) ( ) ( )1 2 1 2, ,M I Mx x g x xµ µ µ µ= + − ⋅  (1) 

where Mµ , Iµ  are the shear moduli of the matrix and the inclusion, representing 

healthy glandular tissue and malignant lesion respectively, ( ) [ ]1 2, 0,1g x x ∈  is a 

normalized function describing the spatial distribution of the two and the smooth 

transition in-between. Here, we take 5I Mµ µ= , which is a typical case for ductal 

carcinoma in situ surrounded by glandular tissue in human breast under small 

deformation (28).  

Focusing on the normalized distribution function (NDF) ( )1 2,g x x , we 

construct relevant sampling spaces to approximate some representative cases of the 

matrix-inclusion geometry. The key features considered include the size, shape and 

position of the inclusions. To do so, we divide the internal region of domain Ω  

into a (n+1)-by-(n+1) evenly spaced grid and assign inclusion ( 1g = ) or matrix 

( 0g = ) to the (n+2)-by-(n+2) grid points (Figure 2b). To avoid the ill-posedness of 

the inverse problem, we assume the boundary is occupied by matrix material and 

choose g = 0 for grid points on the boundary (blue points). The values of the internal 
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grid points (red ones), ijX , can be 0 or 1, forming a grid matrix, n ij n n
X

×
 =  X . Then, 

we adopt a cubic spline method to interpolate the gird point values to construct a 

smooth function ( )1 2, ;h
ng x x X , over the domain Ω , (Figure 2c) satisfying  

 ( ) [ ]1 2, ; 0,1 0 @h h
ng x x and g Edges∈ =X . (2) 

Noting that hg  is uniquely determined by nX  and there are 2n n×  choices for nX  
or hg , we denote the space of ( )1 2, ;h

ng x x X  as the function sampling space 
(FSS), n , i.e.,  

 ( ){ }1 2, ; : , 0 1, , 1,2,..h
n n n ij ijn n

g x x X X or i j n
×

 = = = = X X  (3) 

and it is a finite function space with a dimension as the following, 
 [ ]dim 2n n

n
×= . (4) 

We can use a series of such FSSs, { }, 2,3,4,...n n = , to approximate 

( )1 2,g x x  for the matrix-inclusion cases. Taking n = 4 as an example, for samples 

belonging to 4 , the number, shape, size and topology of inclusions can vary, 

representing various matrix-inclusion geometries (see Figure 2d for representative 

examples and Movie I for more cases). As n increases, the spacing of the grid, 

( )1L n + , decreases, so does the minimal dimension of the inclusions represented in 

n  (Figure 2e). Correspondingly, the dimension of n  increases (Equation (4)) 

and more complex matrix-inclusion cases can be captured. Here, we focus only on 

the cases with a finite n, since the region of interest (i.e., domain Ω ) in 

elastography is often finite and only inclusions with a detectable size are of concern. 
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Figure 2. Construction of representative sampling spaces of the relevant matrix-inclusions cases for the 

prototype inverse problem in elastography. (a) A schematic of the prototype inverse problem. (b) 
Discretizing the domain with a finite grid and a grid matrix Xn. (c) Constructing a full field distribution 
of shear modulus based on Xn using spline interpolation. (d) Representative examples with inclusions of 

different shape, size, position and topology in the sampling space, 4 . (e) Different minimal sizes of 
inclusions in function sampling spaces of different n. 

 
To collect reliable deformation response of samples in n  under the test 

load (Figure 2a), we adopt FEM to solve the forward elasticity problem. Only the 

strain component along the loading direction, 22ε , is collected to mimic the 

situation in elastography. Write the strain filed as,  

 ( ) ( ) ( )22 1 2 min max min 1 2, ,x x f x xε ε ε ε= + − ⋅  (5) 

where minε , maxε  are the minimal and maximal strain and ( ) [ ]1 2, 0,1f x x ∈  

represents the normalized distribution pattern of the strain. The goal of solving the 

inverse problem of elasticity in elastography is to figure out ( )1 2,g x x  given the 

measure of ( )1 2,f x x . Next, we construct a cGAN model to learn the underlying 

relation between these two over the constructed sampling space. 
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A cGAN model and its performance 

We leverage the recent development of image-to-image translation in ML 

study and construct a cGAN model to learn the mapping between images of strain 

and shear modulus. As shown in Figure 3a, ( )1 2,g x x and ( )1 2,f x x are represented 

by images with 256-by-256 pixels. The cGAN model consists of a U-Net 

architectured generator and a convolutional “PatchGAN” classifier, which have 

proven useful in various image-to-image tasks (22, 23). Here, the generator aims at 

creating suitable modulus images conditioned by the input of strain images while 

the discriminator learns to identify the “fake” modulus images created by the 

generator from the real ones. Through training, the performance of the two 

improves adversarially until reaching a Nash equilibrium (29), i.e., the generator 

creates modulus images so real that the trained discriminator cannot distinguish 

them from the real ones. Beside this adversarial objective, minimizing 2L  loss of 

the prediction is also mixed in the training objective for better performance, as 

suggested in previous studies (30). Details about the implementation of the cGAN 

model can be found in the method section.  

The performance of the cGAN model is tested over the cases in 4 . 

Considering the reflection symmetry with respect to the loading, we identify about 

16576 unique samples in 4  and split them into sets of training (70% of the 

samples), validating (15%) and testing (15%). After trained over the training set for 

400 epochs, the cGAN model can make accurate predictions in the testing set, 

which it has never seen before. For example, three randomly picked examples are 

shown in Figure 3b and the predicted distributions agree well with the ground truth 

(More examples can be found in Movie II). On average, a normalized 2L  error, 

2LE , of 0.30% is achieved in the testing set (Figure 3c). Beside the accuracy, the 

well trained cGAN model is also efficient at deployment, as only the generator in 

the cGAN model is activated when applied to the testing set. Making prediction for 

one input takes about 0.06 second in a freely accessed Google Codelabs platform. 

The iterative steps of solving multiple variational problems in the conventional 

methods for the inverse problem in elasticity, which can take minutes (13), is 
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bypassed for all testing cases in the sampling space. This time-efficiency at 

deployment makes it promising for applications requiring real-time response. 

 

 a. A schematic of the cGAN model for strain-modulus mapping

 b. Examples of the cGAN model’s prediction on the testing 
set of  A4  after 400 epochs of training

 c. Histogram of normalized L2 
error of the cGAN model’s 

prediction on the testing set of  
A4  after 400 epochs of training

Generator with a U-Net 
architectureInput: 

Strain image

Prediction: 
modulus image

Input: 
Strain image

Ground truth: 
real modulus image

Discriminator 
of a convolutional 

PatchGAN classifier

Fake

Real

Normalized L2 error,  EL (%)

Co
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ts
 o

f s
am

pl
es

256 x 256 pixels
256 x 256 pixels

 
Figure 3. A cGAN model for the prototype inverse problem in elastography and its predictions on the 
sampling set 4 . (a) Schematic structure of the cGAN model. (b) Randomly picked examples of the 

cGAN model’s prediction on the testing set in 4  after 400 epochs of training. (c) The distribution of 
the normalized L2 error of the prediction of the cGAN model on the test set after 400 epochs of 

training. 

 
As a data-driven approach, the DL model learns to solve all cases in the 

sampling space together through training over a limited portion of the data. To 

demonstrate this generalized predicting capability, we study the effect of the 
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training set size on the performance of the cGAN model over the designed FSS. 

We define the relative sizes of the sets of training, validation and testing as 

 , ,tra val test
tra val test

tot tot tot

N N N
N N N

α α α= = =  (6) 

where traN , valN  and testN  are the sizes of the three sets, respectively, totN  is 

the total number of the unique samples in 4 , and 1tra val testα α α+ + = . Keeping the 

relative size of the validation set valα  as a constant of 10%, we train six cGAN 

models from scratch over the training set with the relative size traα  varying from 

60% to 10%. As shown in Figure 4a, during the first 200 epochs, the performances 

of the all the models improves rapidly toward the converged plateau on both the 

training and testing sets. No overfitting is observed. A close look at the normalized 

L2 error curves reveals that larger training set can promote the learning speed (See 

the zoom-in panel in Figure 4a). After 200 epochs of training, the normalized L2 

errors for the six models are all less than 2% (Figure 4b).  

For meaningful applications in elastography tests, here we set an accuracy 

higher than 99% in the L2 sense (the black dash line in Figure 4b) as the goal. 

Benefited from the representativeness of the designed sampling space and the 

learning capability of the cGAN model, we find training over a 20% portion of the 

samples for 200 epochs is enough to fulfill this goal and make predictions with a 

L2 error less than 1% for the remaining 80% samples in 4 , which the cGAN 

model has never seen before. This effectiveness of a finite size of the training set 

further reduces the training cost of the DL model for a targeted accuracy and 

demonstrate the efficiency of the DL approach in learning the underlying mapping 

between strain and shear modulus in the designed sampling space. This learning 

efficiency may open doors to high-throughput applications in NDEs. 
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Figure 4. The effect of training set size on the performance of the cGAN model. (a) Training history of 
the cGAN models trained over training sets of various size. (d) The performance of cGAN models after 

trained over training sets of various size for 200 epochs. 

DISCUSSION AND CONCLUSION 

In this letter, we leverage some of the recent progresses in ML to address 

the inverse problem of modulus identification in elasticity that involves matrix-

inclusion systems mimicking an elastography set-up. By designing representative 

sampling spaces and constructing capable cGAN models, we demonstrated that the 

DL approach can efficiently learn the high-dimensional mapping between 

distributions of strain and shear modulus via training over a limited portion of the 

samples in the relevant sampling space. At deployment, this approach can response 

rapidly with high accuracy, bypassing the iterative steps of solving multiple 

variational problems in the conventional methods. The DL approach broadens the 

way of addressing challenging inverse problems in real-time elastography and high-

throughput NDE applications. Future studies can further build on this and explore 

the capability of DL-based approaches in handling challenges such as noised data, 

nonlinearity and ill-posedness for various inverse problems (31) in fundamental 

sciences as well as engineering applications.  

MATERIALS AND METHODS 

FEM simulations 

 We perform FEM to solve the boundary value problem in Figure 2a with a 

mesh of triangular C0 elements with 256x256 evenly distributed nodes. A Poisson 
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ratio of 0.499 is used to mimic tissues in elastography and the “B-bar” method is 

adopted to handle this near incompressibility in FEM (24). The images of strain 

and modulus are constructed using the nodal values.  

cGAN model 

 The cGAN model is implemented in Python using TensorFlow (32). Both 

generator and discriminator use the building block in the form of convolution-

BatchNorm-ReLu. Detailed structures can be found in the reference (23). The 

cGAN model are trained with the Adam optimizer (33) with a learning rate of 

0.0002 and momentum parameters 1 20.5, 0.999β β= = . 
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SUPPLEMENTARY INFORMATION 

Movie I: The unique samples in the sampling space 4  representing 

various matrix-inclusion geometry. 

Movie II: The performance of the DL model on the testing set (15%) after 

400-epoch training. 

Both movies can be download using the following link. 

https://www.dropbox.com/sh/gm1q43vvl20xvrx/AABLh2ZntDZtZdUtZYVq6PL

Na?dl=0  

  

https://www.dropbox.com/sh/gm1q43vvl20xvrx/AABLh2ZntDZtZdUtZYVq6PLNa?dl=0
https://www.dropbox.com/sh/gm1q43vvl20xvrx/AABLh2ZntDZtZdUtZYVq6PLNa?dl=0
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